Generating function
$$U_{1089}(x, y) = \frac{\left(- 2 x - \sqrt{1 - 4 x} + 1\right)^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{32 x^{4} y^{6}}$$
Explicit formula
$$T_{1089}(n, m, k) = \frac{6 k^{2} {\binom{4 k + 2 n}{n}} {\binom{6 k + 2 m}{m}}}{\left(2 k + n\right) \left(3 k + m\right)}$$
1 | 6 | 27 | 11 | 429 | 1638 | 6188 |
4 | 24 | 108 | 44 | 1716 | 6552 | 24752 |
14 | 84 | 378 | 154 | 6006 | 22932 | 86632 |
48 | 288 | 1296 | 528 | 20592 | 78624 | 297024 |
165 | 99 | 4455 | 1815 | 70785 | 27027 | 102102 |
572 | 3432 | 15444 | 6292 | 245388 | 936936 | 3539536 |
2002 | 12012 | 54054 | 22022 | 858858 | 3279276 | 12388376 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1089?