Generating function
$$U_{1088}(x, y) = \frac{\left(- 2 x - \sqrt{1 - 4 x} + 1\right)^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{16 x^{4} y^{4}}$$
Explicit formula
$$T_{1088}(n, m, k) = \frac{4 k^{2} {\binom{4 k + 2 m}{m}} {\binom{4 k + 2 n}{n}}}{\left(2 k + m\right) \left(2 k + n\right)}$$
1 | 4 | 14 | 48 | 165 | 572 | 2002 |
4 | 16 | 56 | 192 | 66 | 2288 | 8008 |
14 | 56 | 196 | 672 | 231 | 8008 | 28028 |
48 | 192 | 672 | 2304 | 792 | 27456 | 96096 |
165 | 66 | 231 | 792 | 27225 | 9438 | 33033 |
572 | 2288 | 8008 | 27456 | 9438 | 327184 | 1145144 |
2002 | 8008 | 28028 | 96096 | 33033 | 1145144 | 4008004 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1088?