Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 161
Preview
$$U_{161}(x, y) = \frac{x - \sqrt{x^{2} - 2 x + 4 y + 1} - 1}{2 x - 2}$$
Pyramid 162
Preview
$$U_{162}(x, y) = \frac{y}{\left(1 - x\right)^{3}} + 1$$
Pyramid 163
Preview
$$U_{163}(x, y) = \frac{\left(1 - x\right)^{3}}{- y + \left(1 - x\right)^{3}}$$
Pyramid 164
Preview
$$U_{164}(x, y) = \frac{- x^{3} + 3 x^{2} - 3 x + \left(x - 1\right) \sqrt{x^{4} - 4 x^{3} + 6 x^{2} - 4 x + y \left(4 x - 4\right) + 1} + 1}{2 y}$$
Pyramid 165
Preview
$$U_{165}(x, y) = \frac{x^{2} - 2 x + \sqrt{x^{4} - 4 x^{3} + 6 x^{2} - 4 x + y \left(4 - 4 x\right) + 1} + 1}{2 x^{2} - 4 x + 2}$$
Pyramid 166
Preview
$$U_{166}(x, y) = \left(x + 1\right) \left(y \left(x + 1\right) + 1\right)$$
Pyramid 167
Preview
$$U_{167}(x, y) = \frac{- x - 1}{y \left(x^{2} + 2 x + 1\right) - 1}$$
Pyramid 168
Preview
$$U_{168}(x, y) = \frac{1 - \sqrt{y \left(- 4 x^{3} - 12 x^{2} - 12 x - 4\right) + 1}}{2 y \left(x + 1\right)^{2}}$$
Pyramid 169
Preview
$$U_{169}(x, y) = \frac{x}{2} + \frac{\left(x + 1\right) \sqrt{4 y + 1}}{2} + \frac{1}{2}$$
Pyramid 170
Preview
$$U_{170}(x, y) = \frac{- 2 x y - x - \sqrt{x^{2} - 4 x y - 2 x + 1} + 1}{2 x^{2} y}$$
Pyramid 171
Preview
$$U_{171}(x, y) = \frac{1}{x^{2} - 2 x + y \left(x - 1\right) + 1}$$
Pyramid 172
Preview
$$U_{172}(x, y) = \frac{- x^{2} + 2 x + \sqrt{x^{4} - 4 x^{3} + 6 x^{2} - 4 x + y \left(4 x - 4\right) + 1} - 1}{y \left(2 x - 2\right)}$$
Pyramid 173
Preview
$$U_{173}(x, y) = \frac{- y \left(x - 1\right) + 1}{\left(1 - x\right)^{2}}$$
Pyramid 174
Preview
$$U_{174}(x, y) = \left(x + 1\right) \left(y \left(x + 1\right)^{2} + 1\right)$$
Pyramid 175
Preview
$$U_{175}(x, y) = \frac{- x - 1}{y \left(x^{3} + 3 x^{2} + 3 x + 1\right) - 1}$$
Pyramid 176
Preview
$$U_{176}(x, y) = \frac{1 - \sqrt{- 4 y \left(x + 1\right)^{4} + 1}}{2 y \left(x + 1\right)^{3}}$$
Pyramid 177
Preview
$$U_{177}(x, y) = \frac{x}{2} + \frac{\left(x + 1\right) \sqrt{y \left(4 x + 4\right) + 1}}{2} + \frac{1}{2}$$
Pyramid 178
Preview
$$U_{178}(x, y) = x + \frac{y}{2} + \frac{\sqrt{4 x + y^{2} + 2 y + 1}}{2} + \frac{1}{2}$$
Pyramid 179
Preview
$$U_{179}(x, y) = \frac{x y - 2 x - \sqrt{x^{2} y^{2} - 2 x y + 4 x + 1} - 1}{2 y - 2}$$
Pyramid 180
Preview
$$U_{180}(x, y) = \frac{1}{- x^{2} - 2 x + y \left(x + 1\right) - 1}$$
Page:
1
...
6
7
8
9
10
11
12
...
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less