Generating function
$$U_{165}(x, y) = \frac{x^{2} - 2 x + \sqrt{x^{4} - 4 x^{3} + 6 x^{2} - 4 x + y \left(4 - 4 x\right) + 1} + 1}{2 x^{2} - 4 x + 2}$$
Explicit formula
$$T_{165}(n, m, k) = \begin{cases}1&\text{if n=0,m=0} ,\ \\0&\text{if m=0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{- k + 2 m - 1}{m - 1}} {\binom{3 m + n - 1}{n}}}{m} \end{cases} $$
1 | 1 | -1 | 2 | -5 | 14 | -42 |
0 | 3 | -6 | 18 | -6 | 21 | -756 |
0 | 6 | -21 | 9 | -39 | 168 | -7182 |
0 | 1 | -56 | 33 | -182 | 952 | -4788 |
0 | 15 | -126 | 99 | -6825 | 4284 | -25137 |
0 | 21 | -252 | 2574 | -2184 | 162792 | -1106028 |
0 | 28 | -462 | 6006 | -6188 | 54264 | -4239774 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #165?