Pyramid #165
Generating function
$$U_{165}(x, y) = \frac{x^{2} - 2 x + \sqrt{x^{4} - 4 x^{3} + 6 x^{2} - 4 x + y \left(4 - 4 x\right) + 1} + 1}{2 x^{2} - 4 x + 2}$$
Explicit formula
$$T_{165}(n, m, k) = \begin{cases}1&\text{if n=0,m=0} ,\ \\0&\text{if m=0} ,\ \\\frac{\left(-1\right)^{m - 1} k {\binom{- k + 2 m - 1}{m - 1}} {\binom{3 m + n - 1}{n}}}{m} \end{cases} $$
Data table
1 1 -1 2 -5 14 -42
0 3 -6 18 -6 21 -756
0 6 -21 9 -39 168 -7182
0 1 -56 33 -182 952 -4788
0 15 -126 99 -6825 4284 -25137
0 21 -252 2574 -2184 162792 -1106028
0 28 -462 6006 -6188 54264 -4239774
Export
expand_less