Online encyclopedia of Number Pyramids
Default
By data
search
Pyramid 1461
Preview
$$U_{1461}(x, y) = \frac{- 2 x \left(y + 1\right)^{2} - \sqrt{- 4 x \left(y + 1\right)^{2} + 1} + 1}{2 x^{2} \left(y + 1\right)}$$
Pyramid 1462
Preview
$$U_{1462}(x, y) = \frac{- 2 x \left(y + 1\right)^{3} - \sqrt{- 4 x \left(y + 1\right)^{3} + 1} + 1}{2 x^{2} \left(y + 1\right)^{5}}$$
Pyramid 1463
Preview
$$U_{1463}(x, y) = \frac{- 2 x \left(y + 1\right)^{3} - \sqrt{- 4 x \left(y + 1\right)^{3} + 1} + 1}{2 x^{2} \left(y + 1\right)^{4}}$$
Pyramid 1464
Preview
$$U_{1464}(x, y) = \frac{\sqrt{3} \left(2 y + 2\right) \sin{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{x \left(y + 1\right)}}{2} \right)}}{3} \right)}}{3 \sqrt{x}}$$
Pyramid 1465
Preview
$$U_{1465}(x, y) = \frac{2 \sqrt{3} \left(y + 1\right)^{2} \sin{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{x \left(y + 1\right)}}{2} \right)}}{3} \right)}}{3 \sqrt{x}}$$
Pyramid 1466
Preview
$$U_{1466}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{x \left(y + 1\right)^{3}}}{2} \right)}}{3} \right)}}{3 \sqrt{x \left(y + 1\right)^{3}}}$$
Pyramid 1467
Preview
$$U_{1467}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{x \left(y + 1\right)^{3}}}{2} \right)}}{3} \right)}}{3 \sqrt{x \left(y + 1\right)}}$$
Pyramid 1468
Preview
$$U_{1468}(x, y) = \frac{\sqrt{3} \left(2 y + 2\right) \sin{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{x \left(y + 1\right)^{3}}}{2} \right)}}{3} \right)}}{3 \sqrt{x \left(y + 1\right)}}$$
Pyramid 1469
Preview
$$U_{1469}(x, y) = \frac{2 \sqrt{3} \left(y + 1\right)^{2} \sin{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{x \left(y + 1\right)^{3}}}{2} \right)}}{3} \right)}}{3 \sqrt{x \left(y + 1\right)}}$$
Pyramid 1470
Preview
$$U_{1470}(x, y) = \frac{2 \sqrt{3} \left(y + 1\right)^{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{x}}{2} \right)}}{3} \right)}}{3 \sqrt{x}}$$
Pyramid 1471
Preview
$$U_{1471}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{\left(1 - y\right)^{2}}}}{2} \right)}}{3} \right)}}{3 \sqrt{x}}$$
Pyramid 1472
Preview
$$U_{1472}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{\left(1 - y\right)^{2}}}}{2} \right)}}{3} \right)}}{3 \sqrt{x} \left(1 - y\right)}$$
Pyramid 1473
Preview
$$U_{1473}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{\left(1 - y\right)^{2}}}}{2} \right)}}{3} \right)}}{3 \sqrt{x} \left(1 - y\right)^{2}}$$
Pyramid 1474
Preview
$$U_{1474}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{\left(1 - y\right)^{3}}}}{2} \right)}}{3} \right)}}{3 \sqrt{\frac{x}{\left(1 - y\right)^{3}}}}$$
Pyramid 1475
Preview
$$U_{1475}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{\left(1 - y\right)^{3}}}}{2} \right)}}{3} \right)}}{3 \sqrt{\frac{x}{1 - y}}}$$
Pyramid 1476
Preview
$$U_{1476}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{\left(1 - y\right)^{3}}}}{2} \right)}}{3} \right)}}{3 \sqrt{\frac{x}{1 - y}} \left(1 - y\right)}$$
Pyramid 1477
Preview
$$U_{1477}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{\left(1 - y\right)^{3}}}}{2} \right)}}{3} \right)}}{3 \sqrt{\frac{x}{1 - y}} \left(1 - y\right)}$$
Pyramid 1478
Preview
$$U_{1478}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{x}}{2} \right)}}{3} \right)}}{3 \sqrt{x} \left(1 - y\right)^{3}}$$
Pyramid 1479
Preview
$$U_{1479}(x, y) = \frac{1}{\left(1 - 4 y\right)^{\frac{3}{2}} \left(- \frac{x}{\left(1 - 4 y\right)^{\frac{3}{2}}} + 1\right)}$$
Pyramid 1480
Preview
$$U_{1480}(x, y) = \frac{\frac{x}{\sqrt{1 - 4 y}} + 1}{1 - 4 y}$$
Page:
1
...
71
72
73
74
75
76
or
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
expand_less