Generating function
$$U_{876}(x, y) = \frac{\sqrt{1 - 4 y} \left(1 - \sqrt{- \frac{4 x}{\sqrt{1 - 4 y}} + 1}\right)}{2 x}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{876}(n, m, k) = \frac{k \operatorname{TA_{984}}{\left(m,n \right)} {\binom{k + 2 n - 1}{n}}}{k + n}$$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 2 | 6 | 20 | 70 | 252 | 924 |
2 | 8 | 32 | 128 | 512 | 2048 | 8192 |
5 | 30 | 150 | 700 | 3150 | 13860 | 60060 |
14 | 112 | 672 | 3584 | 17920 | 86016 | 401408 |
42 | 420 | 2940 | 17640 | 97020 | 504504 | 2522520 |
132 | 1584 | 12672 | 84480 | 506880 | 2838528 | 15138816 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #876?