Pyramid #873
Generating function
$$U_{873}(x, y) = \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{\frac{x}{\sqrt{1 - 4 y}}}}{2} \right)}}{3} \right)}}{3 \sqrt{\frac{x}{\sqrt{1 - 4 y}}}}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{873}(n, m, k) = \frac{k \operatorname{TA_{984}}{\left(m,n \right)} {\binom{k + 3 n - 1}{n}}}{k + 2 n}$$
Data table
1 0 0 0 0 0 0
1 2 6 20 70 252 924
3 12 48 192 768 3072 12288
12 72 360 1680 7560 33264 144144
55 440 2640 14080 70400 337920 1576960
273 2730 19110 114660 630630 3279276 16396380
1428 17136 137088 913920 5483520 30707712 163774464
Export
expand_less