Generating function
$$U_{768}(x, y) = \sqrt{4 y + 1} \left(x \sqrt{4 y + 1} + 1\right)^{2}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{768}(n, m, k) = \operatorname{Tsqrt}{\left(m,k + n \right)} {\binom{2 k}{n}}$$
1 | 2 | -2 | 4 | -10 | 28 | -84 |
2 | 8 | 0 | 0 | 0 | 0 | 0 |
1 | 6 | 6 | -4 | 6 | -12 | 28 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #768?