Generating function
$$U_{767}(x, y) = \left(1 - \frac{4 \sin^{2}{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{- x}}{2} \right)}}{3} \right)}}{3}\right)^{2} \sqrt{4 y + 1}$$
Explicit formula
$$TLeftA_{271825}(n, k) = \begin{cases}1&\text{if n = 0},\\\frac {k {(-1)}^{n-1}} {n} {\binom{3n-k-1}{n-1}} &\text{if n > 0},\\\end{cases} $$$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{767}(n, m, k) = \operatorname{TLeftA_{271825}}{\left(n,2 k \right)} \operatorname{Tsqrt}{\left(m,k \right)}$$
1 | 2 | -2 | 4 | -10 | 28 | -84 |
2 | 4 | -4 | 8 | -20 | 56 | -168 |
-3 | -6 | 6 | -12 | 30 | -84 | 252 |
10 | 20 | -20 | 40 | -100 | 280 | -840 |
-42 | -84 | 84 | -168 | 420 | -1176 | 3528 |
198 | 396 | -396 | 792 | -1980 | 5544 | -16632 |
-1001 | -2002 | 2002 | -4004 | 10010 | -28028 | 84084 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #767?