Pyramid #767
Generating function
$$U_{767}(x, y) = \left(1 - \frac{4 \sin^{2}{\left(\frac{\arcsin{\left(\frac{3 \sqrt{3} \sqrt{- x}}{2} \right)}}{3} \right)}}{3}\right)^{2} \sqrt{4 y + 1}$$
Explicit formula
$$TLeftA_{271825}(n, k) = \begin{cases}1&\text{if n = 0},\\\frac {k {(-1)}^{n-1}} {n} {\binom{3n-k-1}{n-1}} &\text{if n > 0},\\\end{cases} $$$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{767}(n, m, k) = \operatorname{TLeftA_{271825}}{\left(n,2 k \right)} \operatorname{Tsqrt}{\left(m,k \right)}$$
Data table
1 2 -2 4 -10 28 -84
2 4 -4 8 -20 56 -168
-3 -6 6 -12 30 -84 252
10 20 -20 40 -100 280 -840
-42 -84 84 -168 420 -1176 3528
198 396 -396 792 -1980 5544 -16632
-1001 -2002 2002 -4004 10010 -28028 84084
Export
expand_less