Pyramid #715
Generating function
$$U_{715}(x, y) = \frac{\sqrt{4 x \sqrt{4 y + 1} + 1}}{2} + \frac{1}{2}$$
Explicit formula
$$TA_{271825}(n, k) = \begin{cases}1&\text{if n = 0},\\\frac {k {(-1)}^{n-1}} {n} {\binom{2n-k-1}{n-1}} &\text{if n > 0},\\\end{cases} $$$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{715}(n, m, k) = \operatorname{TA_{271825}}{\left(n,k \right)} \operatorname{Tsqrt}{\left(m,n \right)}$$
Data table
1 0 0 0 0 0 0
1 2 -2 4 -10 28 -84
-1 -4 0 0 0 0 0
2 12 12 -8 12 -24 56
-5 -40 -80 0 0 0 0
14 140 420 280 -140 168 -280
-42 -504 -2016 -2688 0 0 0
Export
expand_less