Pyramid #714
Generating function
$$U_{714}(x, y) = \frac{- 2 x \sqrt{4 y + 1} - \sqrt{- 4 x \sqrt{4 y + 1} + 1} + 1}{2 x^{2} \left(4 y + 1\right)}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{714}(n, m, k) = \frac{k \operatorname{Tsqrt}{\left(m,n \right)} {\binom{2 k + 2 n}{n}}}{k + n}$$
Data table
1 0 0 0 0 0 0
2 4 -4 8 -20 56 -168
5 2 0 0 0 0 0
14 84 84 -56 84 -168 392
42 336 672 0 0 0 0
132 1320 3960 264 -1320 1584 -2640
429 5148 20592 27456 0 0 0
Export
expand_less