Generating function
$$U_{536}(x, y) = - \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{y^{3} \left(8 x - \frac{2 \left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}}\right)}$$
Explicit formula
$$T_{536}(n, m, k) = \begin{cases}{\binom{k + n - 1}{n}}&\text{if m==0 } ,\ \\\frac{\left(-1\right)^{m - 1} \left(k - 2 n\right) {\binom{k + n - 1}{n}} {\binom{- k - m + 2 n - 1}{m - 1}}}{m} \end{cases} $$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
1 | -1 | -1 | -2 | -5 | -14 | -42 |
1 | -3 | 0 | -1 | -3 | -9 | -28 |
1 | -5 | 5 | 0 | 0 | -1 | -5 |
1 | -7 | 14 | -7 | 0 | 0 | 0 |
1 | -9 | 27 | -3 | 9 | 0 | 0 |
1 | -11 | 44 | -77 | 55 | -11 | 0 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #536?