Pyramid #536
Generating function
$$U_{536}(x, y) = - \frac{\left(1 - \sqrt{1 - 4 y}\right)^{3}}{y^{3} \left(8 x - \frac{2 \left(1 - \sqrt{1 - 4 y}\right)^{2}}{y^{2}}\right)}$$
Explicit formula
$$T_{536}(n, m, k) = \begin{cases}{\binom{k + n - 1}{n}}&\text{if m==0 } ,\ \\\frac{\left(-1\right)^{m - 1} \left(k - 2 n\right) {\binom{k + n - 1}{n}} {\binom{- k - m + 2 n - 1}{m - 1}}}{m} \end{cases} $$
Data table
1 1 2 5 14 42 132
1 -1 -1 -2 -5 -14 -42
1 -3 0 -1 -3 -9 -28
1 -5 5 0 0 -1 -5
1 -7 14 -7 0 0 0
1 -9 27 -3 9 0 0
1 -11 44 -77 55 -11 0
Export
expand_less