Generating function
$$U_{535}(x, y) = \frac{- \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{4}}{16 y^{4}}} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}}}{2 x}$$
Explicit formula
$$T_{535}(n, m, k) = \begin{cases}\frac{k {\binom{k + 2 n - 1}{n}}}{k + n}&\text{if m==0 } ,\ \\\frac{\left(-1\right)^{m - 1} k \left(k - n\right) {\binom{k + 2 n - 1}{n}} {\binom{- k - m + n - 1}{m - 1}}}{m \left(k + n\right)} \end{cases} $$
| 1 | 1 | 2 | 5 | 14 | 42 | 132 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | -2 | -2 | -4 | -1 | -28 | -84 |
| 5 | -1 | -5 | -1 | -25 | -7 | -21 |
| 14 | -42 | 0 | -14 | -42 | -126 | -392 |
| 42 | -168 | 84 | 0 | -42 | -168 | -588 |
| 132 | -66 | 66 | 0 | 0 | -132 | -66 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #535?