Pyramid #535
Generating function
$$U_{535}(x, y) = \frac{- \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{4}}{16 y^{4}}} + \frac{\left(1 - \sqrt{1 - 4 y}\right)^{2}}{4 y^{2}}}{2 x}$$
Explicit formula
$$T_{535}(n, m, k) = \begin{cases}\frac{k {\binom{k + 2 n - 1}{n}}}{k + n}&\text{if m==0 } ,\ \\\frac{\left(-1\right)^{m - 1} k \left(k - n\right) {\binom{k + 2 n - 1}{n}} {\binom{- k - m + n - 1}{m - 1}}}{m \left(k + n\right)} \end{cases} $$
Data table
1 1 2 5 14 42 132
1 0 0 0 0 0 0
2 -2 -2 -4 -1 -28 -84
5 -1 -5 -1 -25 -7 -21
14 -42 0 -14 -42 -126 -392
42 -168 84 0 -42 -168 -588
132 -66 66 0 0 -132 -66
Export
expand_less