Pyramid #409
Generating function
$$U_{409}(x, y) = \sqrt[3]{\frac{\sqrt{3} x \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}} + \frac{\sqrt{x \left(27 x + \frac{16 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 y}\right)} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{9 \sqrt{y}} + \frac{8 \sqrt{3} \sin^{3}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{243 y^{\frac{3}{2}}}} + \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{27 y \sqrt[3]{\frac{\sqrt{3} x \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}} + \frac{\sqrt{x \left(27 x + \frac{16 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 y}\right)} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{9 \sqrt{y}} + \frac{8 \sqrt{3} \sin^{3}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{243 y^{\frac{3}{2}}}}} + \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{9 \sqrt{y}}$$
Explicit formula
$$T_{409}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{- k + 3 n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\\frac{\left(-1\right)^{m + 1} k {\binom{k - 2 n}{n}} {\binom{- k - 2 m + 2 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
Data table
1 1 3 12 55 273 1428
1 -1 -2 -7 -3 -143 -728
-2 6 6 2 84 396 2002
7 -35 0 -35 -175 -882 -462
-3 21 -21 0 21 147 882
143 -1287 2574 -429 0 -1287 -12012
-728 8008 -24024 16016 0 0 8008
Export
expand_less