Generating function
$$U_{409}(x, y) = \sqrt[3]{\frac{\sqrt{3} x \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}} + \frac{\sqrt{x \left(27 x + \frac{16 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 y}\right)} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{9 \sqrt{y}} + \frac{8 \sqrt{3} \sin^{3}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{243 y^{\frac{3}{2}}}} + \frac{4 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{27 y \sqrt[3]{\frac{\sqrt{3} x \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}} + \frac{\sqrt{x \left(27 x + \frac{16 \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 y}\right)} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{9 \sqrt{y}} + \frac{8 \sqrt{3} \sin^{3}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{243 y^{\frac{3}{2}}}}} + \frac{2 \sqrt{3} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{9 \sqrt{y}}$$
Explicit formula
$$T_{409}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{- k + 3 n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\\frac{\left(-1\right)^{m + 1} k {\binom{k - 2 n}{n}} {\binom{- k - 2 m + 2 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
1 | 1 | 3 | 12 | 55 | 273 | 1428 |
1 | -1 | -2 | -7 | -3 | -143 | -728 |
-2 | 6 | 6 | 2 | 84 | 396 | 2002 |
7 | -35 | 0 | -35 | -175 | -882 | -462 |
-3 | 21 | -21 | 0 | 21 | 147 | 882 |
143 | -1287 | 2574 | -429 | 0 | -1287 | -12012 |
-728 | 8008 | -24024 | 16016 | 0 | 0 | 8008 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #409?