Pyramid #291
Generating function
$$U_{291}(x, y) = \frac{\sqrt{3} \left(\sqrt{2 \sqrt{3} x \sqrt{y} \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)} + \sin^{2}{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}} + \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}\right)}{3 \sqrt{y}}$$
Explicit formula
$$T_{291}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\frac{\left(-1\right)^{n - 1} k {\binom{- k + 2 n - 1}{n - 1}}}{n}&\text{if n>0 and m=0} ,\ \\\frac{\left(-1\right)^{m + 1} k {\binom{k - n}{n}} {\binom{- k - 2 m + n - 1}{m - 1}}}{m} \end{cases} $$
Data table
1 1 3 12 55 273 1428
1 0 0 0 0 0 0
-1 1 2 7 3 143 728
2 -4 -6 -2 -84 -396 -2002
-5 15 15 5 21 99 5005
14 -56 -28 -112 -49 -2352 -12012
-42 21 0 21 105 5292 2772
Export
expand_less