Generating function
$$U_{407}(x, y) = \sqrt[3]{\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{4 y^{2}} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}}\right)} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{36 y^{2}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{216 y^{6}}} + \frac{- 2 y - \sqrt{1 - 4 y} + 1}{6 y^{2}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{36 y^{4} \sqrt[3]{\frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{4 y^{2}} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}}\right)} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{36 y^{2}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{216 y^{6}}}}$$
Explicit formula
$$T_{407}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\left(-1\right)^{n - 1} k {\binom{- k + 3 n - 1}{n - 1}}&\text{if m=0} ,\ \\\frac{2 k {\binom{k - 2 n}{n}} {\binom{2 k + 2 m - 4 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
1 | 2 | 5 | 14 | 42 | 132 | 429 |
1 | -2 | -1 | -2 | -5 | -14 | -42 |
-4 | 12 | -18 | 4 | 0 | 0 | 2 |
21 | -7 | 245 | -35 | 175 | -14 | 0 |
-12 | 42 | -231 | 63 | -882 | 588 | -147 |
715 | -2574 | 19305 | -78078 | 184041 | -254826 | 198198 |
-4368 | 16016 | -152152 | 816816 | -272272 | 5829824 | -8016008 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #407?