Generating function
$$U_{406}(x, y) = - \frac{\sqrt{\frac{2 x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)}{y^{2}} + \frac{\left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{4 y^{4}}}}{2} + \frac{- 2 y - \sqrt{1 - 4 y} + 1}{4 y^{2}}$$
Explicit formula
$$T_{406}(n, m, k) = \begin{cases}0&\text{if n<k} ,\ \\- \frac{\left(-1\right)^{n - 1} k {\binom{- k + 2 n - 1}{n - 1}}}{n}&\text{if m=0} ,\ \\- \frac{2 k {\binom{k - n}{n}} {\binom{2 k + 2 m - 2 n - 1}{m - 1}}}{m}&\text{if m>0} \end{cases} $$
0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | -2 | -1 | -2 | -5 | -14 | -42 |
-2 | 8 | -4 | 0 | 2 | 8 | 28 |
5 | -3 | 45 | -1 | 0 | 0 | -5 |
-14 | 112 | -28 | 224 | -28 | 0 | 0 |
42 | -42 | 147 | -21 | 105 | -84 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #406?