Generating function
$$U_{379}(x, y) = \sqrt[3]{\frac{x \sqrt{1 - 4 y}}{2} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{4}{\left(1 - 4 y\right)^{2}}\right)} \sqrt{1 - 4 y}}{18} + \frac{1}{27 \left(1 - 4 y\right)^{\frac{3}{2}}}} + \frac{1}{\left(9 - 36 y\right) \sqrt[3]{\frac{x \sqrt{1 - 4 y}}{2} + \frac{\sqrt{3} \sqrt{x \left(27 x + \frac{4}{\left(1 - 4 y\right)^{2}}\right)} \sqrt{1 - 4 y}}{18} + \frac{1}{27 \left(1 - 4 y\right)^{\frac{3}{2}}}}} + \frac{1}{3 \sqrt{1 - 4 y}}$$
Explicit formula
$$T_{379}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\frac{\left(-1\right)^{m - 1} \cdot 4^{m} k {\binom{- \frac{k}{2} + \frac{3 n}{2} - 1}{m - 1}}}{2 m}&\text{if n=0 and m>0} ,\ \\\frac{\left(-1\right)^{n - 1} \cdot 4^{m} k {\binom{- k + 3 n - 1}{n - 1}} {\binom{\frac{k}{2} + m - 2 n - 1}{m}}}{n}&\text{if n>0} \end{cases} $$
1 | 2 | 4 | 32/3 | 32 | 512/5 | 1024/3 |
1 | -4 | 0 | 0 | 0 | 0 | 0 |
-2 | 24 | -96 | 128 | 0 | 0 | 0 |
7 | -14 | 112 | -448 | 896 | -7168 | 0 |
-3 | 84 | -1008 | 672 | -2688 | 64512 | -86016 |
143 | -5148 | 82368 | -768768 | 4612608 | -18450432 | 49201152 |
-728 | 32032 | -64064 | 768768 | -6150144 | 344408064 | -1377632256 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #379?