Generating function
$$U_{377}(x, y) = \frac{\sqrt{\sqrt{1 - 4 y} \left(- 16 x y + 4 x\right) + 1} + 1}{2 \sqrt{1 - 4 y}}$$
Explicit formula
$$T_{377}(n, m, k) = \begin{cases}1&\text{if n=0 and m=0} ,\ \\\frac{\left(-1\right)^{m - 1} \cdot 4^{m} k {\binom{- \frac{k}{2} + n - 1}{m - 1}}}{2 m}&\text{if m>0 and n=0} ,\ \\\frac{\left(-1\right)^{n - 1} \cdot 4^{m} k {\binom{- k + 2 n - 1}{n - 1}} {\binom{\frac{k}{2} + m - \frac{3 n}{2} - 1}{m}}}{n}&\text{if n>0} \end{cases} $$
1 | 2 | 4 | 32/3 | 32 | 512/5 | 1024/3 |
1 | -4 | 0 | 0 | 0 | 0 | 0 |
-1 | 8 | -16 | 0 | 0 | 0 | 0 |
2 | -32 | 192 | -512 | 512 | 0 | 0 |
-5 | 1 | -8 | 32 | -64 | 512 | 0 |
14 | -392 | 4704 | -3136 | 12544 | -301056 | 401408 |
-42 | 1344 | -18816 | 150528 | -75264 | 2408448 | -4816896 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #377?