Generating function
$$U_{253}(x, y) = \frac{1}{\sqrt{- 4 x^{2} - 4 y^{2} + 1}}$$
Explicit formula
$$T_{253}(n, m, k) = \begin{cases}\frac{\left(\left(-1\right)^{m} + 1\right) \left(\left(-1\right)^{n} + 1\right) {\binom{\frac{m}{2} + \frac{n}{2}}{\frac{n}{2}}} {\binom{\frac{k}{2} + \frac{m}{2} + \frac{n}{2} - \frac{1}{2}}{\frac{m}{2} + \frac{n}{2}}} {\binom{k + m + n - 1}{\frac{k}{2} + \frac{m}{2} + \frac{n}{2} - \frac{1}{2}}}}{4 {\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} ,\ \\\frac{\left(\left(-1\right)^{m} + 1\right) \left(\left(-1\right)^{n} + 1\right) {\binom{\frac{m}{2} + \frac{n}{2}}{\frac{n}{2}}} {\binom{\frac{k}{2} + \frac{m}{2} + \frac{n}{2}}{\frac{m}{2} + \frac{n}{2}}} {\binom{k + m + n}{\frac{k}{2} + \frac{m}{2} + \frac{n}{2}}}}{4 {\binom{k}{\frac{k}{2}}}}&\text{if k even} \end{cases} $$
1 | 0 | 2 | 0 | 6 | 0 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 12 | 0 | 6 | 0 | 28 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 6 | 0 | 42 | 0 | 252 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 28 | 0 | 252 | 0 | 1848 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #253?