Generating function
$$U_{252}(x, y) = \frac{- x^{2} - \sqrt{x^{4} - 2 x^{2} - 4 y + 1} + 1}{2 y}$$
Explicit formula
$$T_{252}(n, m, k) = \frac{k \left(\left(-1\right)^{n} + 1\right) {\binom{m + \frac{n}{2}}{m}} {\binom{k + 2 m + \frac{n}{2} - 1}{m + \frac{n}{2}}}}{2 k + 2 m}$$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 3 | 1 | 35 | 126 | 462 | 1716 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 6 | 3 | 14 | 63 | 2772 | 12012 |
0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 7 | 42 | 231 | 12012 | 6006 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #252?