Generating function
$$U_{218}(x, y) = \frac{1 - \sqrt{1 - 4 x}}{2 x \sqrt{1 - 4 y}}$$
Explicit formula
$$T_{218}(n, m, k) = \begin{cases}\frac{k {\binom{\frac{k}{2} + m}{m}} {\binom{k + 2 m}{\frac{k}{2} + m}} {\binom{k + 2 n - 1}{n}}}{\left(k + n\right) {\binom{k}{\frac{k}{2}}}}&\text{if k even} ,\ \\\frac{k {\binom{\frac{k}{2} + m - \frac{1}{2}}{m}} {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}} {\binom{k + 2 n - 1}{n}}}{\left(k + n\right) {\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 2 | 6 | 2 | 7 | 252 | 924 |
1 | 2 | 6 | 2 | 7 | 252 | 924 |
2 | 4 | 12 | 4 | 14 | 504 | 1848 |
5 | 1 | 3 | 1 | 35 | 126 | 462 |
14 | 28 | 84 | 28 | 98 | 3528 | 12936 |
42 | 84 | 252 | 84 | 294 | 10584 | 38808 |
132 | 264 | 792 | 264 | 924 | 33264 | 121968 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #218?