Pyramid #218
Generating function
$$U_{218}(x, y) = \frac{1 - \sqrt{1 - 4 x}}{2 x \sqrt{1 - 4 y}}$$
Explicit formula
$$T_{218}(n, m, k) = \begin{cases}\frac{k {\binom{\frac{k}{2} + m}{m}} {\binom{k + 2 m}{\frac{k}{2} + m}} {\binom{k + 2 n - 1}{n}}}{\left(k + n\right) {\binom{k}{\frac{k}{2}}}}&\text{if k even} ,\ \\\frac{k {\binom{\frac{k}{2} + m - \frac{1}{2}}{m}} {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}} {\binom{k + 2 n - 1}{n}}}{\left(k + n\right) {\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 2 6 2 7 252 924
1 2 6 2 7 252 924
2 4 12 4 14 504 1848
5 1 3 1 35 126 462
14 28 84 28 98 3528 12936
42 84 252 84 294 10584 38808
132 264 792 264 924 33264 121968
Export
expand_less