Pyramid #217
Generating function
$$U_{217}(x, y) = \frac{1}{\left(1 - x\right)^{2} \sqrt{1 - 4 y}}$$
Explicit formula
$$T_{217}(n, m, k) = \begin{cases}\frac{{\binom{\frac{k}{2} + m}{m}} {\binom{k + 2 m}{\frac{k}{2} + m}} {\binom{2 k + n - 1}{n}}}{{\binom{k}{\frac{k}{2}}}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + m - \frac{1}{2}}{m}} {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}} {\binom{2 k + n - 1}{n}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 2 6 2 7 252 924
2 4 12 4 14 504 1848
3 6 18 6 21 756 2772
4 8 24 8 28 1008 3696
5 1 3 1 35 126 462
6 12 36 12 42 1512 5544
7 14 42 14 49 1764 6468
Export
expand_less