Generating function
$$U_{217}(x, y) = \frac{1}{\left(1 - x\right)^{2} \sqrt{1 - 4 y}}$$
Explicit formula
$$T_{217}(n, m, k) = \begin{cases}\frac{{\binom{\frac{k}{2} + m}{m}} {\binom{k + 2 m}{\frac{k}{2} + m}} {\binom{2 k + n - 1}{n}}}{{\binom{k}{\frac{k}{2}}}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + m - \frac{1}{2}}{m}} {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}} {\binom{2 k + n - 1}{n}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 2 | 6 | 2 | 7 | 252 | 924 |
2 | 4 | 12 | 4 | 14 | 504 | 1848 |
3 | 6 | 18 | 6 | 21 | 756 | 2772 |
4 | 8 | 24 | 8 | 28 | 1008 | 3696 |
5 | 1 | 3 | 1 | 35 | 126 | 462 |
6 | 12 | 36 | 12 | 42 | 1512 | 5544 |
7 | 14 | 42 | 14 | 49 | 1764 | 6468 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #217?