Generating function
$$U_{212}(x, y) = \frac{1}{\sqrt{- \frac{4 y}{1 - x} + 1}}$$
Explicit formula
$$T_{212}(n, m, k) = \begin{cases}\frac{{\binom{\frac{k}{2} + m}{m}} {\binom{k + 2 m}{\frac{k}{2} + m}} {\binom{m + n - 1}{n}}}{{\binom{k}{\frac{k}{2}}}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + m - \frac{1}{2}}{m}} {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}} {\binom{m + n - 1}{n}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 2 | 6 | 2 | 7 | 252 | 924 |
0 | 2 | 12 | 6 | 28 | 126 | 5544 |
0 | 2 | 18 | 12 | 7 | 378 | 19404 |
0 | 2 | 24 | 2 | 14 | 882 | 51744 |
0 | 2 | 3 | 3 | 245 | 1764 | 116424 |
0 | 2 | 36 | 42 | 392 | 31752 | 232848 |
0 | 2 | 42 | 56 | 588 | 5292 | 426888 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #212?