Pyramid #212
Generating function
$$U_{212}(x, y) = \frac{1}{\sqrt{- \frac{4 y}{1 - x} + 1}}$$
Explicit formula
$$T_{212}(n, m, k) = \begin{cases}\frac{{\binom{\frac{k}{2} + m}{m}} {\binom{k + 2 m}{\frac{k}{2} + m}} {\binom{m + n - 1}{n}}}{{\binom{k}{\frac{k}{2}}}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + m - \frac{1}{2}}{m}} {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}} {\binom{m + n - 1}{n}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 2 6 2 7 252 924
0 2 12 6 28 126 5544
0 2 18 12 7 378 19404
0 2 24 2 14 882 51744
0 2 3 3 245 1764 116424
0 2 36 42 392 31752 232848
0 2 42 56 588 5292 426888
Export
expand_less