Generating function
$$U_{211}(x, y) = \frac{1}{\sqrt{- 4 y + \left(1 - x\right)^{4}}}$$
Explicit formula
$$T_{211}(n, m, k) = \begin{cases}\frac{{\binom{\frac{k}{2} + m}{m}} {\binom{k + 2 m}{\frac{k}{2} + m}} {\binom{2 k + 4 m + n - 1}{n}}}{{\binom{k}{\frac{k}{2}}}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + m - \frac{1}{2}}{m}} {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}} {\binom{2 k + 4 m + n - 1}{n}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 2 | 6 | 2 | 7 | 252 | 924 |
2 | 12 | 6 | 28 | 126 | 5544 | 24024 |
3 | 42 | 33 | 21 | 1197 | 63756 | 324324 |
4 | 112 | 132 | 112 | 798 | 510048 | 3027024 |
5 | 252 | 429 | 476 | 41895 | 31878 | 21945924 |
6 | 504 | 12012 | 17136 | 184338 | 1657656 | 131675544 |
7 | 924 | 3003 | 54264 | 706629 | 7459452 | 680323644 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #211?