Pyramid #211
Generating function
$$U_{211}(x, y) = \frac{1}{\sqrt{- 4 y + \left(1 - x\right)^{4}}}$$
Explicit formula
$$T_{211}(n, m, k) = \begin{cases}\frac{{\binom{\frac{k}{2} + m}{m}} {\binom{k + 2 m}{\frac{k}{2} + m}} {\binom{2 k + 4 m + n - 1}{n}}}{{\binom{k}{\frac{k}{2}}}}&\text{if k even} ,\ \\\frac{{\binom{\frac{k}{2} + m - \frac{1}{2}}{m}} {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}} {\binom{2 k + 4 m + n - 1}{n}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 2 6 2 7 252 924
2 12 6 28 126 5544 24024
3 42 33 21 1197 63756 324324
4 112 132 112 798 510048 3027024
5 252 429 476 41895 31878 21945924
6 504 12012 17136 184338 1657656 131675544
7 924 3003 54264 706629 7459452 680323644
Related
Export
expand_less