Generating function
$$U_{1485}(x, y) = \frac{\frac{x}{\left(1 - 4 y\right)^{\frac{3}{2}}} + 1}{1 - 4 y}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{1485}(n, m, k) = \operatorname{TA_{984}}{\left(m,2 k + 3 n \right)} {\binom{k}{n}}$$
Data table
1 4 16 64 256 1024 4096
1 10 70 420 2310 12012 60060
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Related
Export
expand_less