Generating function
$$U_{1484}(x, y) = \frac{\frac{x}{\left(1 - 4 y\right)^{\frac{3}{2}}} + 1}{\sqrt{1 - 4 y}}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{1484}(n, m, k) = \operatorname{TA_{984}}{\left(m,k + 3 n \right)} {\binom{k}{n}}$$
Data table
1 2 6 20 70 252 924
1 8 48 256 1280 6144 28672
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
Related
Export
expand_less