Generating function
$$U_{1368}(x, y) = \frac{\left(y + 1\right)^{3}}{\sqrt{1 - 4 x}}$$
Explicit formula
$$T_{1368}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{3 k}{m}} {\binom{\frac{k}{2} + n - 1}{n}}&\text{if k even} ,\ \\\frac{{\binom{3 k}{m}} {\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 3 3 1 0 0 0
2 6 6 2 0 0 0
6 18 18 6 0 0 0
2 6 6 2 0 0 0
7 21 21 7 0 0 0
252 756 756 252 0 0 0
924 2772 2772 924 0 0 0
Related
Export
expand_less