Generating function
$$U_{1368}(x, y) = \frac{\left(y + 1\right)^{3}}{\sqrt{1 - 4 x}}$$
Explicit formula
$$T_{1368}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{3 k}{m}} {\binom{\frac{k}{2} + n - 1}{n}}&\text{if k even} ,\ \\\frac{{\binom{3 k}{m}} {\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 3 | 3 | 1 | 0 | 0 | 0 |
2 | 6 | 6 | 2 | 0 | 0 | 0 |
6 | 18 | 18 | 6 | 0 | 0 | 0 |
2 | 6 | 6 | 2 | 0 | 0 | 0 |
7 | 21 | 21 | 7 | 0 | 0 | 0 |
252 | 756 | 756 | 252 | 0 | 0 | 0 |
924 | 2772 | 2772 | 924 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1368?