Generating function
$$U_{1367}(x, y) = \frac{\left(y + 1\right)^{2}}{\sqrt{1 - 4 x}}$$
Explicit formula
$$T_{1367}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\4^{n} {\binom{2 k}{m}} {\binom{\frac{k}{2} + n - 1}{n}}&\text{if k even} ,\ \\\frac{{\binom{2 k}{m}} {\binom{\frac{k}{2} + n - \frac{1}{2}}{n}} {\binom{k + 2 n - 1}{\frac{k}{2} + n - \frac{1}{2}}}}{{\binom{k - 1}{\frac{k}{2} - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
1 | 2 | 1 | 0 | 0 | 0 | 0 |
2 | 4 | 2 | 0 | 0 | 0 | 0 |
6 | 12 | 6 | 0 | 0 | 0 | 0 |
2 | 4 | 2 | 0 | 0 | 0 | 0 |
7 | 14 | 7 | 0 | 0 | 0 | 0 |
252 | 504 | 252 | 0 | 0 | 0 | 0 |
924 | 1848 | 924 | 0 | 0 | 0 | 0 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1367?