Generating function
$$U_{1115}(x, y) = 2 x \left(y + 1\right)^{5} + \left(y + 1\right)^{2} \sqrt{4 x^{2} \left(y + 1\right)^{6} + 1}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{1115}(n, m, k) = k \operatorname{Tsqrt_{2}}{\left(n,k \right)} {\binom{2 k + 3 n}{m}}$$
Data table
1 2 1 0 0 0 0
2 1 2 2 1 2 0
2 16 56 112 14 112 56
0 0 0 0 0 0 0
-2 -28 -182 -728 -2002 -4004 -6006
0 0 0 0 0 0 0
4 80 760 4560 19380 62016 155040
Export
expand_less