Generating function
$$U_{1220}(x, y) = \frac{\sqrt{2} \sqrt{\frac{1 - \sqrt{1 - 16 y}}{y}}}{4 \left(1 - x\right)^{2}}$$
Explicit formula
$$T_{1220}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0 , k=0} ,\ \\\frac{4^{m} k {\binom{\frac{k}{2} + 2 m - 1}{m}} {\binom{2 k + n - 1}{n}}}{k + 2 m}&\text{if k even} ,\ \\\frac{k {\binom{\frac{k}{2} + 2 m - \frac{1}{2}}{m}} {\binom{k + 4 m - 1}{\frac{k}{2} + 2 m - \frac{1}{2}}} {\binom{2 k + n - 1}{n}}}{\left(k + 2 m\right) {\binom{k + 2 m - 1}{\frac{k}{2} + m - \frac{1}{2}}}}&\text{if k odd} \end{cases} $$
Data table
1 2 14 132 1430 16796 208012
2 4 28 264 2860 33592 416024
3 6 42 396 4290 50388 624036
4 8 56 528 5720 67184 832048
5 10 70 660 7150 83980 1040060
6 12 84 792 8580 100776 1248072
7 14 98 924 10010 117572 1456084
Related
Export
expand_less