Generating function
$$U_{1210}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \sqrt{\frac{2 x \left(1 - \sqrt{1 - 4 y}\right)}{y} + 1}}{2 y}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1210}(n, m, k) = \frac{\left(k + n\right) \operatorname{Tsqrt}{\left(n,k \right)} {\binom{k + 2 m + n - 1}{m}}}{k + m + n}$$
Data table
1 1 2 5 14 42 132
2 4 1 28 84 264 858
-2 -6 -18 -56 -180 -594 -2002
4 16 56 192 660 2288 8008
-10 -50 -200 -750 -2750 -10010 -36400
28 168 756 3080 12012 45864 173264
-84 -588 -2940 -12936 -53508 -214032 -839664
Related
Export
expand_less