Generating function
$$U_{1209}(x, y) = \frac{32768 y^{18} \left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{4 y^{3}} - \sqrt{- \frac{x \left(1 - \sqrt{1 - 4 y}\right)^{3}}{2 y^{3}} + 1} + 1\right)^{3}}{x^{6} \left(1 - \sqrt{1 - 4 y}\right)^{18}}$$
Explicit formula
$$T_{1209}(n, m, k) = \frac{9 k n {\binom{6 k + 2 n}{n}} {\binom{2 m + 3 n - 1}{m}}}{\left(3 k + n\right) \left(m + 3 n\right)}$$
nan | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 18 | 54 | 168 | 54 | 1782 | 6006 |
27 | 162 | 729 | 297 | 11583 | 44226 | 167076 |
11 | 99 | 594 | 3003 | 1386 | 60588 | 255816 |
429 | 5148 | 3861 | 233376 | 1247103 | 6162156 | 28870842 |
1638 | 2457 | 22113 | 15561 | 945945 | 52216164 | 2693691 |
6188 | 111384 | 1169532 | 9393384 | 640458 | 39095784 | 220456782 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1209?