Generating function
$$U_{1200}(x, y) = \frac{1024 y^{24} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{4 y^{6}} - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{3}}{2 y^{6}} + 1} + 1\right)^{2}}{x^{4} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{12}}$$
Explicit formula
$$T_{1200}(n, m, k) = \frac{6 k n {\binom{4 k + 2 n}{n}} {\binom{2 m + 6 n}{m}}}{\left(2 k + n\right) \left(m + 3 n\right)}$$
nan | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 24 | 108 | 44 | 1716 | 6552 | 24752 |
14 | 168 | 126 | 7616 | 40698 | 201096 | 942172 |
48 | 864 | 9072 | 72864 | 4968 | 303264 | 1710072 |
165 | 396 | 5346 | 53592 | 445005 | 3240864 | 21425712 |
572 | 1716 | 28314 | 34034 | 333333 | 282285432 | 214327828 |
2002 | 72072 | 1405404 | 1969968 | 222360138 | 2147673528 | 18425675268 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1200?