Generating function
$$U_{1199}(x, y) = \frac{64 y^{16} \left(- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{2 y^{4}} - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1} + 1\right)^{2}}{x^{4} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{8}}$$
Explicit formula
$$T_{1199}(n, m, k) = \frac{4 k n {\binom{4 k + 2 n}{n}} {\binom{2 m + 4 n}{m}}}{\left(2 k + n\right) \left(m + 2 n\right)}$$
nan | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 16 | 56 | 192 | 66 | 2288 | 8008 |
14 | 112 | 616 | 2912 | 1274 | 53312 | 217056 |
48 | 576 | 432 | 26112 | 139536 | 689472 | 3230304 |
165 | 264 | 2508 | 1848 | 116886 | 66792 | 355212 |
572 | 1144 | 13156 | 1144 | 83655 | 54342288 | 32396364 |
2002 | 48048 | 648648 | 6502496 | 5399394 | 393224832 | 2599653056 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1199?