Generating function
$$U_{1166}(x, y) = \frac{4 y^{8} \left(1 - \sqrt{- \frac{x \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{2}}{y^{4}} + 1}\right)^{2}}{x^{2} \left(- 2 y - \sqrt{1 - 4 y} + 1\right)^{4}}$$
Explicit formula
$$T_{1166}(n, m, k) = \frac{4 k n {\binom{2 m + 4 n}{m}} {\binom{2 k + 2 n - 1}{n}}}{\left(2 k + n\right) \left(m + 2 n\right)}$$
nan | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 8 | 28 | 96 | 33 | 1144 | 4004 |
5 | 4 | 22 | 104 | 455 | 1904 | 7752 |
14 | 168 | 126 | 7616 | 40698 | 201096 | 942172 |
42 | 672 | 6384 | 4704 | 297528 | 170016 | 904176 |
132 | 264 | 3036 | 264 | 19305 | 12540528 | 7476084 |
429 | 10296 | 138996 | 1393392 | 1157013 | 84262464 | 557068512 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1166?