Generating function
$$U_{1165}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \sqrt{4 x + 1}}{2 y}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1165}(n, m, k) = \frac{k \operatorname{Tsqrt}{\left(n,k \right)} {\binom{k + 2 m - 1}{m}}}{k + m}$$
Data table
1 1 2 5 14 42 132
2 2 4 1 28 84 264
-2 -2 -4 -10 -28 -84 -264
4 4 8 20 56 168 528
-10 -10 -20 -50 -140 -420 -1320
28 28 56 140 392 1176 3696
-84 -84 -168 -420 -1176 -3528 -11088
Related
Export
expand_less