Generating function
$$U_{1165}(x, y) = \frac{\left(1 - \sqrt{1 - 4 y}\right) \sqrt{4 x + 1}}{2 y}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{1165}(n, m, k) = \frac{k \operatorname{Tsqrt}{\left(n,k \right)} {\binom{k + 2 m - 1}{m}}}{k + m}$$
1 | 1 | 2 | 5 | 14 | 42 | 132 |
2 | 2 | 4 | 1 | 28 | 84 | 264 |
-2 | -2 | -4 | -10 | -28 | -84 | -264 |
4 | 4 | 8 | 20 | 56 | 168 | 528 |
-10 | -10 | -20 | -50 | -140 | -420 | -1320 |
28 | 28 | 56 | 140 | 392 | 1176 | 3696 |
-84 | -84 | -168 | -420 | -1176 | -3528 | -11088 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #1165?