Generating function
$$U_{997}(x, y) = \frac{1}{\left(x + 1\right)^{2} \sqrt{- y \left(4 x + 4\right) + 1}}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{997}(n, m, k) = \operatorname{TA_{984}}{\left(m,k \right)} {\binom{- 2 k + m}{n}}$$
1 | 2 | 6 | 20 | 70 | 252 | 924 |
-2 | -2 | 0 | 20 | 140 | 756 | 3696 |
3 | 2 | 0 | 0 | 70 | 756 | 5544 |
-4 | -2 | 0 | 0 | 0 | 252 | 3696 |
5 | 2 | 0 | 0 | 0 | 0 | 924 |
-6 | -2 | 0 | 0 | 0 | 0 | 0 |
7 | 2 | 0 | 0 | 0 | 0 | 0 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #997?