Generating function
$$U_{972}(x, y) = \frac{1}{- x \left(4 y + 1\right)^{\frac{3}{2}} + 1}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{972}(n, m, k) = \operatorname{Tsqrt}{\left(m,3 n \right)} {\binom{k + n - 1}{n}}$$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 6 | 6 | -4 | 6 | -12 | 28 |
1 | 12 | 48 | 64 | 0 | 0 | 0 |
1 | 18 | 126 | 420 | 630 | 252 | -84 |
1 | 24 | 240 | 1280 | 3840 | 6144 | 4096 |
1 | 30 | 390 | 2860 | 12870 | 36036 | 60060 |
1 | 36 | 576 | 5376 | 32256 | 129024 | 344064 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #972?