Pyramid #972
Generating function
$$U_{972}(x, y) = \frac{1}{- x \left(4 y + 1\right)^{\frac{3}{2}} + 1}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{972}(n, m, k) = \operatorname{Tsqrt}{\left(m,3 n \right)} {\binom{k + n - 1}{n}}$$
Data table
1 0 0 0 0 0 0
1 6 6 -4 6 -12 28
1 12 48 64 0 0 0
1 18 126 420 630 252 -84
1 24 240 1280 3840 6144 4096
1 30 390 2860 12870 36036 60060
1 36 576 5376 32256 129024 344064
Export
expand_less