Pyramid #970
Generating function
$$U_{970}(x, y) = \sqrt{2 x \left(\sqrt{4 y + 1} + 1\right) + 1}$$
Explicit formula
$$TA_{271825}(n, k) = \begin{cases}1&\text{if n = 0},\\\frac {k {(-1)}^{n-1}} {n} {\binom{2n-k-1}{n-1}} &\text{if n > 0},\\\end{cases} $$$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{970}(n, m, k) = \operatorname{TA_{271825}}{\left(m,n \right)} \operatorname{Tsqrt}{\left(n,k \right)}$$
Data table
1 0 0 0 0 0 0
2 2 -2 4 -10 28 -84
-2 -4 2 -4 10 -28 84
4 12 0 4 -12 36 -112
-10 -40 -20 0 10 -40 140
28 140 140 0 0 28 -140
-84 -504 -756 -168 0 0 84
Related
Export
expand_less