Generating function
$$U_{962}(x, y) = \frac{- 2 x y + \sqrt{4 x^{2} + 4 x y + 1} - 1}{x^{2} \left(2 y^{2} - 2\right)}$$
Explicit formula
$$T_{962}(n, m, k) = \begin{cases}0&\text{if (n+m) % 2 = 1} ,\ \\\frac{2 \left(-1\right)^{k + \frac{m}{2} + \frac{n}{2}} k {\binom{k + n - 1}{k + \frac{m}{2} + \frac{n}{2} - 1}} {\binom{2 k + m + n}{m}}}{2 k + m + n}&\text{if (n+m) % 2 = 0} \end{cases} $$
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | -5 | 0 | 0 | 0 | 0 |
0 | -6 | 0 | 14 | 0 | 0 | 0 |
-2 | 0 | 28 | 0 | -42 | 0 | 0 |
0 | 20 | 0 | -120 | 0 | 132 | 0 |
5 | 0 | -135 | 0 | 495 | 0 | -429 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #962?