Generating function
$$U_{958}(x, y) = \frac{- x y - \sqrt{x^{2} y^{2} - 4 x^{2} - 2 x y + 1} + 1}{2 x^{2}}$$
Explicit formula
$$T_{958}(n, m, k) = \begin{cases}\frac{k {\binom{k + n}{\frac{m}{2} + \frac{n}{2}}} {\binom{\frac{m}{2} + \frac{n}{2}}{m}}}{k + n}&\text{if n + m even} ,\ \\0 \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 1 | 0 | 0 | 0 |
2 | 0 | 6 | 0 | 1 | 0 | 0 |
0 | 10 | 0 | 10 | 0 | 1 | 0 |
5 | 0 | 30 | 0 | 15 | 0 | 1 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #958?