Pyramid #938
Generating function
$$U_{938}(x, y) = 2 x + 2 y + \sqrt{4 x^{2} + 8 x y + 4 y^{2} + 1}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{938}(n, m, k) = \frac{k \operatorname{Tsqrt}{\left(m + n,k + m + n \right)} {\binom{m + n}{m}}}{k + m + n}$$
Data table
1 2 2 0 -2 0 4
2 4 0 -8 0 24 0
2 0 -12 0 60 0 -280
0 -8 0 80 0 -560 0
-2 0 60 0 -700 0 5880
0 24 0 -560 0 7056 0
4 0 -280 0 5880 0 -77616
Export
expand_less