Generating function
$$U_{935}(x, y) = \frac{2 x y - x \sqrt{- 4 x y + 4 y^{2} + 1} - 1}{4 x y - 1}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{935}(n, m, k) = \begin{cases}1&\text{if n=0 , m=0} ,\ \\\frac{k \operatorname{Tsqrt_{2}}{\left(m,n \right)} {\binom{k + m}{n}}}{k + m} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 2 | 2 | 0 | -2 | 0 | 4 |
0 | 2 | 8 | 12 | 0 | -20 | 0 |
0 | 0 | 6 | 32 | 60 | 0 | -140 |
0 | 0 | 0 | 20 | 128 | 280 | 0 |
0 | 0 | 0 | 0 | 70 | 512 | 1260 |
0 | 0 | 0 | 0 | 0 | 252 | 2048 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #935?