Pyramid #931
Generating function
$$U_{931}(x, y) = \frac{\sqrt{- 8 x y - 4 x \sqrt{4 y^{2} + 1} + 1}}{2} + \frac{1}{2}$$
Explicit formula
$$Tsqrt2(n, k) = \begin{cases}\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k even, where j =} \frac{n+k} {2},\\\frac {k \binom{n+j}{n} \binom{2n+2j}{n+j}} {\binom{2j}{j} {n+k}} &\text{if n+k odd, where j =} \frac{n+k+1} {2},\\\end{cases} $$$$T_{931}(n, m, k) = \begin{cases}1&\text{if n = 0,m = 0} ,\ \\0&\text{if n = 0,m > 0} ,\ \\- \frac{k \operatorname{Tsqrt_{2}}{\left(m,n \right)} {\binom{- k + 2 n - 1}{n - 1}}}{n} \end{cases} $$
Data table
1 0 0 0 0 0 0
-1 -2 -2 0 2 0 -4
-1 -4 -8 -8 0 8 0
-2 -12 -36 -64 -60 0 56
-5 -40 -160 -400 -640 -560 0
-14 -140 -700 -2240 -4900 -7168 -5880
-42 -504 -3024 -11760 -32256 -63504 -86016
Export
expand_less