Generating function
$$U_{832}(x, y) = \frac{- y^{2} + 2 y + \sqrt{- 4 x + y^{4} - 4 y^{3} + 6 y^{2} - 4 y + 1} - 1}{2 x y - 2 x}$$
Explicit formula
$$T_{832}(n, m, k) = \frac{k {\binom{k + 2 n - 1}{n}} {\binom{3 k + m + 4 n - 1}{m}}}{k + n}$$
1 | 3 | 6 | 1 | 15 | 21 | 28 |
1 | 7 | 28 | 84 | 21 | 462 | 924 |
2 | 22 | 132 | 572 | 2002 | 6006 | 16016 |
5 | 75 | 6 | 34 | 153 | 5814 | 1938 |
14 | 266 | 266 | 1862 | 10241 | 471086 | 1884344 |
42 | 966 | 11592 | 966 | 6279 | 339066 | 1582308 |
132 | 3564 | 49896 | 482328 | 361746 | 22428252 | 119617344 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #832?