Generating function
$$U_{825}(x, y) = \frac{1}{\left(- \frac{2 \sqrt{3} x \sin{\left(\frac{\operatorname{asin}{\left(\frac{3 \sqrt{3} \sqrt{y}}{2} \right)}}{3} \right)}}{3 \sqrt{y}} + 1\right)^{2}}$$
Explicit formula
$$T_{825}(n, m, k) = \begin{cases}1&\text{if n=0,m=0} ,\ \\\frac{n {\binom{2 k + n - 1}{n}} {\binom{3 m + n - 1}{m}}}{2 m + n} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 2 | 6 | 24 | 11 | 546 | 2856 |
3 | 6 | 21 | 9 | 429 | 2184 | 11628 |
4 | 12 | 48 | 22 | 1092 | 5712 | 31008 |
5 | 2 | 9 | 44 | 2275 | 1224 | 6783 |
6 | 3 | 15 | 78 | 42 | 23256 | 13167 |
7 | 42 | 231 | 1274 | 714 | 40698 | 235543 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #825?