Generating function
$$U_{819}(x, y) = \frac{1}{- x \sqrt{4 y + 1} + 1}$$
Explicit formula
$$Tsqrt(n, k) = \begin{cases}\binom{m}{n} 4^{n}&\text{if k even, where m =} \frac{k} {2},\\\frac {{(-1)}^{n-m} \binom{n}{m} \binom{2n}{n}} {\binom{2n}{2m}} &\text{if k odd, n > m, where m =} \frac{k+1} {2},\\\frac {\binom{2m}{2n} \binom{2n}{n}} {\binom{m}{n}}&\text{if k odd, n} \le \text{m, where m =} \frac{k+1} {2},\\\end{cases} $$$$T_{819}(n, m, k) = \operatorname{Tsqrt}{\left(m,n \right)} {\binom{k + n - 1}{n}}$$
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 2 | -2 | 4 | -10 | 28 | -84 |
| 1 | 4 | 0 | 0 | 0 | 0 | 0 |
| 1 | 6 | 6 | -4 | 6 | -12 | 28 |
| 1 | 8 | 16 | 0 | 0 | 0 | 0 |
| 1 | 10 | 30 | 2 | -10 | 12 | -20 |
| 1 | 12 | 48 | 64 | 0 | 0 | 0 |
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #819?