Generating function
$$U_{816}(x, y) = \frac{- 2 x \sqrt{1 - 4 y} - 4 y - \sqrt{16 y^{2} - 8 y + \sqrt{1 - 4 y} \left(16 x y - 4 x\right) + 1} + 1}{2 x^{2}}$$
Explicit formula
$$TA_{984}(n, k) = \begin{cases}{4}^{n} \binom {n+j-1} {n} &\text{if k even, where j =} \frac {k} {2},\\\frac {\binom {n+j} {n} \binom {2n+2j} {n+j}} {\binom {2j} {j}}&\text{if k odd, where j =} \frac {k-1} {2},\end{cases} $$$$T_{816}(n, m, k) = \frac{k \operatorname{TA_{984}}{\left(m,n \right)} {\binom{2 k + 2 n}{n}}}{k + n}$$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 4 | 12 | 40 | 140 | 504 | 1848 |
5 | 2 | 8 | 32 | 128 | 512 | 2048 |
14 | 84 | 420 | 1960 | 8820 | 38808 | 168168 |
42 | 336 | 2016 | 10752 | 53760 | 258048 | 1204224 |
132 | 1320 | 9240 | 55440 | 304920 | 1585584 | 7927920 |
429 | 5148 | 41184 | 274560 | 1647360 | 9225216 | 49201152 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #816?