Generating function
$$U_{806}(x, y) = \frac{1}{\left(- \frac{x \left(1 - \sqrt{1 - 4 y}\right)}{2 y} + 1\right)^{2}}$$
Explicit formula
$$T_{806}(n, m, k) = \begin{cases}1&\text{if n=0,m=0} ,\ \\\frac{n {\binom{2 k + n - 1}{n}} {\binom{2 m + n - 1}{m}}}{m + n} \end{cases} $$
1 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 2 | 4 | 1 | 28 | 84 | 264 |
3 | 6 | 15 | 42 | 126 | 396 | 1287 |
4 | 12 | 36 | 112 | 36 | 1188 | 4004 |
5 | 2 | 7 | 24 | 825 | 286 | 1001 |
6 | 3 | 12 | 45 | 165 | 6006 | 2184 |
7 | 42 | 189 | 77 | 3003 | 11466 | 43316 |
Related
Export
Export as LaTeX
Export as Maxima
Confirm deletion
Are you sure, you want to delete Pyramid #806?